ACT Project 3: Translational Pharmacoepidemiology

Project Leads: Shelly Gray, PharmD, MS; Jessica Young, PhD

Presenting today: Jessica Young, PhD; Shelly Gray, PharmD, MS; Tiara Schwarze-Taufiq, BS
What is Translational Pharmacoepidemiology?

Combining population-based observational studies with *in vitro* cellular models to uncover mechanisms by which medications taken by older adults could lead to dementia.
Why is this important?

- Older adults use a wide range of medications that may have off-target effects.
- Observational studies cannot tell whether it is the drug itself or the condition for which it was prescribed for that increases dementia risk.
- This concept is known as “Confounding by Indication”
How are we addressing this in Project 3?

Aim 1: Deploy a human stem cell-based molecular assay to directly test mechanisms of neurotoxicity from AChs and address confounding by indication.

Aim 2: To determine comparative associations of AHTs with dementia and AD using neuropathology and neuroimaging outcomes. Test cellular mechanisms of neuroprotection.
Focus on Aim 1

Aim 1: Deploy a human stem cell-based molecular assay to directly test mechanisms of neurotoxicity from AChs and address confounding by indication.
ACh Background and Rationale

AC Exposure is Associated with Dementia and Alzheimer’s Disease

<table>
<thead>
<tr>
<th>ACh Use</th>
<th>Dementia HR (95% CI)</th>
<th>AD HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No use</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>< 90 TSDD</td>
<td>0.92 (0.74-1.16)</td>
<td>0.95 (0.74-1.23)</td>
</tr>
<tr>
<td>90 – 365 TSDD</td>
<td>1.19 (0.94-1.51)</td>
<td>1.15 (0.88-1.51)</td>
</tr>
<tr>
<td>365 – 1095 TSDD</td>
<td>1.23 (0.94-1.62)</td>
<td>1.30 (0.96-1.76)</td>
</tr>
<tr>
<td>> 1095 TSDD</td>
<td>1.54 (1.21-1.96)</td>
<td>1.63 (1.24-2.14)</td>
</tr>
</tbody>
</table>

Adjusted for age, study cohort, sex, education, hypertension, diabetes, smoking, stroke, coronary heart disease, body mass index, exercise, self-rated health, depression, Parkinson’s disease, benzodiazepines.

Dementia risk may vary by ACh medication class

Anticholinergic drugs and risk of dementia: case-control study

Kathryn Richardson,1 Chris Fox,2 Ian Maidment,3 Nicholas Steel,2 Yoon K Loke,2 Antony Arthur,1 Phyo K Myint,4 Carlota M Grossi,1 Katharina Mattishent,2 Kathleen Bennett,5 Noll L Campbell,6 Malaz Boustanian,7 Louise Robinson,8 Carol Brayne,9 Fiona E Matthews,10 George M Savva1

- Antidepressants
- Bladder antimuscarinics
- Antiparkinson drugs

Antihistamines, antispasmodics, antipsychotics,

Richardson K et al. BMJ 2018;361:k1315 | doi: 10.1136/bmj.k1315

Anticholinergic Drug Exposure and the Risk of Dementia
A Nested Case-Control Study

Carol A. C. Coupland, PhD,1 Trevor Hill, MSc,1 Tom Dening, MD,2 Richard Morriss, MD,2 Michael Moore, MSc,3 and Julia Hippisley-Cox, MD1,4

- Antidepressants
- Bladder antimuscarinics
- Antiparkinson drugs
- Antipsychotics, antiepileptics

Antihistamines, skeletal muscle relaxants, gastrointestinal antispasmodics
Model

Possible Cellular Mechanisms:
1. Downstream events from Antagonism of ACh receptors.

2. Off-target effects of drugs
 *Can still affect pathway related to AD.

Pharmacoepidemiology
Population-wide Dementia and AD Hypotheses
Some AChs increase the risk of dementia and AD

Expected Outcomes:
- Direct Effect on Molecular Pathway
- Biases Due to Confounding

Stem Cell Modeling
Cellular Neurotoxicity or Neuroprotection Hypotheses
AChs associated with dementia and AD risk will be more neurotoxic

Expected Outcomes:
- Direct Effect on Molecular Pathway
We will test this using human induced pluripotent stem cells (hiPSCs)

- These are somatic cells, taken from a patient with a disease.
- They have been “reprogrammed” to a stem-cell state.
- They can become any cell type of the body.

Human Induced Pluripotent Stem Cells

- **Living CNS cells**
- **Human Genetics**
- **Reductionist model that can directly test the effect of the drug**
The process to generate hiPSC-derived neurons

- We take leptomeningeal tissue collected at autopsy from ACT subjects.
- These subjects have a neuropathological diagnosis of AD or no-AD.
- In the lab, we dissect this tissue and culture it as a primary leptomeningeal cell line.

In collaboration with Neuropathology Core: Dr. Keene’s group

Primary leptomeningeal cells

~ 2 weeks

Rose...Keene, Young, JNEN 2018.
The process to generate hiPSC-derived neurons

> We reprogram these cells by transfecting them with four factors
 - OCT3/4
 - KLF4
 - SOX2
 - L-MYC

Pluripotency factors: mimic gene expression found in an embryo
Nobel Price 2012

Primary leptomeningeal cells

~30 days

hiPSC colony: Can become any cell type
The process to generate hiPSC-derived neurons

hiPSC colony: can become any cell type

12 days
Promote neuroectoderm and neural progenitor cells

Neural progenitor cells

60 days
Promote excitatory cortical neurons
Stem Cell Rationale

- These cells have the genetic background of the ACT participant from whom they were derived.

- The cells can be used to test the direct effects of a drug and understand the mechanism of action at the cellular level.

- Conditions that may contribute to confounding by indication are removed.

- We anticipate that these experiments combined with the observational studies in ACT will provide clarity to the ACh and AHT hypotheses.
Overall Project

- Development of a bioassay that measures relevant AD cellular phenotypes after treatment with a drug.
- We will use cell lines generated from ACT patients with high and low AD risk.
- We will measure four cellular outcomes.

Anticholinergics (Aim 1)

- Urological
- SSRI
- Tricyclic
- Antihistamine

Antihypertensives (Aim 2D)

- ARB
- ACEi
- Thiazide

Low AD risk neurons → High AD risk neurons

Optimize drug Dose and timing

Cellular Outcomes:
1. Aβ peptide secretion
2. Tau phosphorylation
3. Neurotoxicity
4. Neuronal Function

Relate to AD neuropathology

Relate to Neurodegeneration
Understanding Cholinergic Signaling Pathways in Neurons

<table>
<thead>
<tr>
<th></th>
<th>Muscarinic</th>
<th>Nicotinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalling Type</td>
<td>Metabotropic (G-protein coupled)</td>
<td>Ionotropic</td>
</tr>
<tr>
<td>Subtypes</td>
<td>M1-M5</td>
<td>N1, N2</td>
</tr>
<tr>
<td>Localization</td>
<td>M1-M5 all found in brain</td>
<td>N1– peripheral/muscle</td>
</tr>
<tr>
<td></td>
<td>Also found in heart, intestine, and bladder</td>
<td>N2– central/neuronal</td>
</tr>
<tr>
<td>Relevance to brain</td>
<td>M1– learning and higher cognitive processes</td>
<td>Neurotransmitter release, small subset of fast excitatory transmission, neuroinflammation</td>
</tr>
<tr>
<td></td>
<td>All– many; BBB permeability, synaptic plasticity</td>
<td></td>
</tr>
</tbody>
</table>
Understanding Cholinergic Signaling Pathways in Neurons

<table>
<thead>
<tr>
<th></th>
<th>Muscarinic</th>
<th>Nicotinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalling Type</td>
<td>Metabotropic (G-protein coupled)</td>
<td>Ionotropic</td>
</tr>
<tr>
<td>Subtypes</td>
<td>M1-M5</td>
<td>N1, N2</td>
</tr>
<tr>
<td>Localization</td>
<td>M1-M5 all found in brain</td>
<td>N1— peripheral/muscle</td>
</tr>
<tr>
<td></td>
<td>Also found in heart, intestine, and bladder</td>
<td>N2— central/neuronal</td>
</tr>
<tr>
<td>Relevance to brain</td>
<td>M1— learning and higher cognitive processes</td>
<td>Neurotransmitter release, small subset of fast excitatory transmission, neuroinflammation</td>
</tr>
<tr>
<td></td>
<td>All— many; BBB permeability, synaptic plasticity</td>
<td></td>
</tr>
</tbody>
</table>
Hypotheses about what blocking these receptors might do

- Blockage of normal and pathological tau uptake in neurons
- Altered equilibrium between amyloidogenic and non-amyloidogenic APP processing
- Animal studies suggest that muscarinic antagonism may decrease both short and long-term potentiation
Proof-of-Concept experiment

Add ACh treatments:
- 8 drugs
- 2 doses
- 2 timepoints

Measure:
- Cytotoxicity,
- Aβ

WT Neurons

AD Neurons (APP Swedish Mutation)
Proof-of-Concept experiment

Drugs tested:
- Antidepressants:
 - Amitriptyline
 - Doxepin
 - Paroxetine
- Antihistamines
 - Diphenhydramine
 - Chlorpheniramine
- Bladder antimuscarinics
 - Oxybutynin
 - Tolterodine
- Antispasmodics
 - Atropine
Results

> Cytotoxicity
Results

> Amyloid Beta

$A\beta_{1-42}/A\beta_{1-40}$ Ratio: 24 Hour Treatment

$A\beta_{1-42}/A\beta_{1-40}$ Ratio: 48 Hour Treatment

- Antidepressants
- Antihistamines
- Bladder antimuscarinics
- Antispasmodics
- Cholinergic agonist
- Vehicle control
Results

Summary

<table>
<thead>
<tr>
<th>Table 1.</th>
<th>Association found in observational studies</th>
<th>Neurotoxicity in stem cell-derived neurons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antidepressants</td>
<td>Yes: Positive Association</td>
<td></td>
</tr>
<tr>
<td>Amitriptyline</td>
<td></td>
<td>Dose-dependent</td>
</tr>
<tr>
<td>Doxepin</td>
<td></td>
<td>Dose & time dependent</td>
</tr>
<tr>
<td>Paroxetine</td>
<td></td>
<td>Dose & time dependent</td>
</tr>
<tr>
<td>Antihistamines</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Chlorpheniramine</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Bladder antimuscarinics</td>
<td>Yes: Positive Association</td>
<td></td>
</tr>
<tr>
<td>Oxybutynin</td>
<td></td>
<td>Dose & time dependent</td>
</tr>
<tr>
<td>Tolterodine</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Antispasmodics</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Atropine</td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>
Dose and time-dependent effects

> Examining dose and time dependence may clarify nuances in how drugs exert effects on AD phenotypes.

> Differences in molecular pathways that lead to neurotoxicity or changes in APP processing may occur at specific concentrations or exposure periods.
Conclusions

> Cytotoxicity differs by class and between individual drugs of the same class

 – Antidepressants and bladder antimuscarinics demonstrated toxicity while antihistamines and antispasmodics did not, matching population study findings

> Drugs demonstrating toxicity increased the ratio of secreted AB42/40 in a dose- and time-dependent manner
Future work

> Testing in ACT participant cell lines
 - 23 hiPSC lines generated
 - 12 AD/11CTL: Neuropathological Diagnosis
 - 10 Male/13 Female
Future work

- Experiments testing engagement of pathways involved in muscarinic antagonism and/or off-target effects of each drug
- Assays for different proteins involved in amyloid processing
- Dose-response for drugs demonstrating toxicity
Project Team:

UW
Shelly Gray, PharmD, MS
Jessica Young, PhD
Tiara Schwarze-Taufiq, BS
Doug Barthold, PhD
Paul Crane, MD, MPH
Caitlin Latimer, PhD
C. Dirk Keene, MD, PhD
Eric Larson, MD, MPH
Christine MacDonald, PhD

KPWHRI
Onchee Yu, MS
Nicole Gatto, PhD
Kelly Meyers, BA
Sundary Sankaran, BA

Chart abstraction team
Ann Kelley, MHA
Leslie Nemerever, BFA
Jennifer Covey, BS
Camille Campbell, BA
Becky Lederman, BSN
Leigh Sheridan, MPHc