UNIVERSITY of WASHINGTON

ACT Project 3: Translational Pharmacoepidemiology Project Leads: Shelly Gray, PharmD, MS; Jessica Young, PhD Presenting today: Jessica Young, PhD; Shelly Gray, PharmD, MS; Tiara Schwarze-Taufiq, BS

What is Translational Pharmacoepidemiology?

Combining population-based observational studies with *in vitro* cellular models to uncover mechanisms by which medications taken by older adults could lead to dementia.

Why is this important?

- > Older adults use a wide range of medications that may have offtarget effects.
- > Observational studies cannot tell whether it is the drug itself or the condition for which it was prescribed for that increases dementia risk.
- > This concept is known as "Confounding by Indication"

How are we addressing this in Project 3?

Aim 1: Deploy a human stem cell-based molecular assay to directly test mechanisms of neurotoxicity from AChs and address confounding by indication.

Aim 2: To determine comparative associations of AHTs with dementia and AD using neuropathology and neuroimaging outcomes. Test cellular mechanisms of neuroprotection.

Focus on Aim 1

Aim 1: Deploy a human stem cell-based molecular assay to directly test mechanisms of neurotoxicity from AChs and address confounding by indication.

ACh Background and Rationale

Original Investigation

Cumulative Use of Strong Anticholinergics and Incident Dementia A Prospective Cohort Study

Shelly L. Gray, PharmD, MS; Melissa L. Anderson, MS; Sascha Dublin, MD, PhD; Joseph T. Hanlon, PharmD, MS; Rebecca Hubbard, PhD; Rod Walker, MS; Onchee Yu, MS; Paul K. Crane, MD, MPH; Eric B. Larson, MD, MPH

Gray et al. JAMA Intern Med 2015; 175:401-407.

AC Exposure is Associated with Dementia and Alzheimer's Disease

ACh Use	Dementia	AD
	HR (95% CI)	HR (95% CI)
No use	1	1
< 90 TSDD	0.92 (0.74-1.16)	0.95 (0.74-1.23)
90 – 365 TSDD	1.19 (0.94-1.51)	1.15 (0.88-1.51)
365 – 1095 TSDD	1.23 (0.94-1.62)	1.30 (0.96-1.76)
> 1095 TSDD	1.54 (1.21-1.96)	1.63 (1.24-2.14)

Adjusted for age, study cohort, sex, education, hypertension, diabetes, smoking, stroke, coronary heart disease, body mass index, exercise, self-rated health, depression, Parkinsons disease, benzodiazepines

Gray SL et al. JAMA Intern Med 2015; 175(3):401-407.

Dementia risk may vary by ACh medication class

Anticholinergic drugs and risk of dementia: case-control study

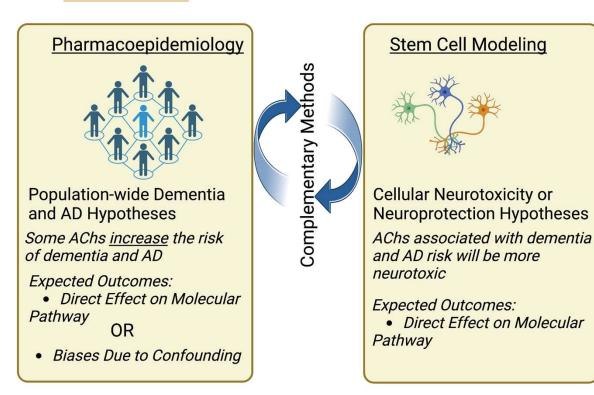
Kathryn Richardson,¹ Chris Fox,² Ian Maidment,³ Nicholas Steel,² Yoon K Loke,² Antony Arthur,¹ Phyo K Myint,⁴ Carlota M Grossi,¹ Katharina Mattishent,² Kathleen Bennett,⁵ Noll L Campbell,⁶ Malaz Boustani,⁷ Louise Robinson,⁸ Carol Brayne,⁹ Fiona E Matthews,¹⁰ George M Savva¹

- ✓ Antidepressants
- ✓ Bladder antimuscarinics
- ✓ Antiparkinson drugs

Antihistamines, antispasmodics, antipsychotics,

Anticholinergic Drug Exposure and the Risk of Dementia A Nested Case-Control Study

<u>Carol A. C. Coupland</u>, PhD,^{M1} <u>Trevor Hill</u>, MSc,¹ <u>Tom Dening</u>, MD,² <u>Richard Morriss</u>, MD,² <u>Michael Moore</u>, MSc,³ and <u>Julia Hippisley-Cox</u>, MD^{1,4}

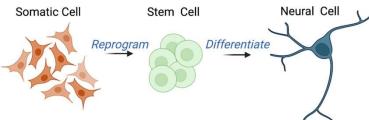

- ✓ Antidepressants
- Bladder antimuscarinics
- ✓ Antiparkinson drugs
- ✓ Antipsychotics, antiepileptics

S Antihistamines, skeletal muscle relaxants, gastrointestinal antispasmodics

Richardson K et. al. BMJ 2018;361:k1315 | doi: 10.1136/bmj.k1315 Coupland et al. JAMA Intern Med. 2019;179(8):1084-1093

Model

Possible Cellular Mechanisms:

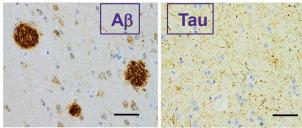

1. Downstream events from Antagonism of ACh receptors.

2. Off-target effects of drugs
*Can still affect pathway
related to AD.

We will test this using human induced pluripotent stem cells (hiPSCs)

- > These are somatic cells, taken from a patient with a disease.
- > They have been "reprogrammed" to a stem-cell state.
- > They can become any cell type of the body.

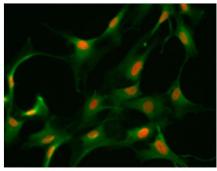
Human Induced Pluripotent Stem Cells



- Living CNS cells
- Human Genetics
- Reductionist model that can directly test the effect of the drug

The process to generate hiPSC-derived neurons

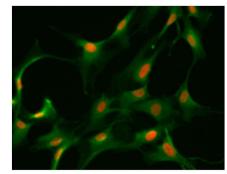
- > We take leptomeningeal tissue collected at autopsy from ACT subjects
- > These subjects have a neuropathological diagnosis of AD or no-AD.
- > In the lab, we dissect this tissue and culture it as a primary leptomeningeal cell line

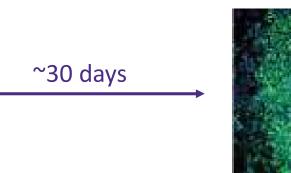

In collaboration with Neuropathology Core: Dr. Keene's group

~ 2 weeks

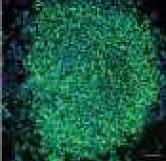
Rose...Keene, Young, JNEN 2018.

Primary leptomeningeal cells




The process to generate hiPSC-derived neurons

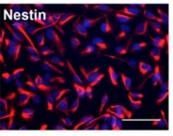
- > We reprogram these cells by transfecting them with four factors
 - OCT3/4
 - KLF4
 - SOX2
 - L-MYC


 Pluripotency factors: mimic gene expression found in an embryo Nobel Price 2012

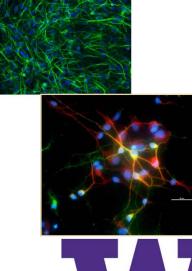
Primary leptomeningeal cells

hiPSC colony: Can become any cell type

The process to generate hiPSC-derived neurons


hiPSC colony: can become any cell type

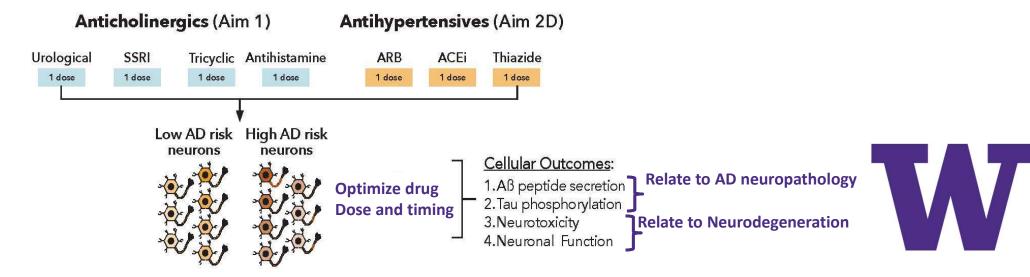
12 days


Promote neuroectoderm and neural progenitor cells

Neural progenitor cells

60 days

Promote excitatory cortical neurons


Stem Cell Rationale

- > These cells have the genetic background of the ACT participant from whom they were derived
- > The cells can be used to test the direct effects of a drug and understand the mechanism of action at the cellular level.
- > Conditions that may contribute to confounding by indication are removed
- > We anticipate that these experiments combined with the observational studies in ACT will provide clarity to the ACh and AHT hypotheses.

Overall Project

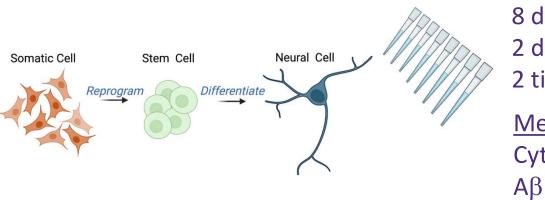
- > Development of a bioassay that measures relevant AD cellular phenotypes after treatment with a drug.
- > We will use cell lines generated from ACT patients with high and low AD risk.
- > We will measure four cellular outcomes.

Understanding Cholinergic Signaling Pathways in Neurons

	Muscarinic	Nicotinic	
Signalling Type	Metabotropic (G- protein coupled)	Ionotropic	
Subtypes	M1-M5	N1, N2	
Localization	M1-M5 all found in brain Also found in heart, intestine, and bladder	N1– peripheral/muscle N2– central/neuronal	
Relevance to brain	M1– learning and higher cognitive processes All– many; BBB permeability, synaptic plasticity	Neurotransmitter release, small subset of fast excitatory transmission, neuroinflammation	

Understanding Cholinergic Signaling Pathways in Neurons

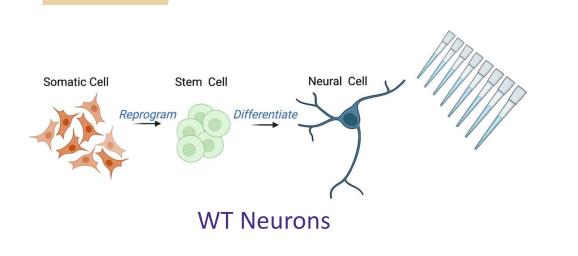
	Muscarinic	Nicotinic
Signalling Type	Metabotropic (G- protein coupled)	Ionotropic
Subtypes	M1-M5	N1, N2
Localization	M1-M5 all found in brain Also found in heart, intestine, and bladder	N1– peripheral/muscle N2– central/neuronal
Relevance to brain	M1– learning and higher cognitive processes All– many; BBB permeability, synaptic plasticity	Neurotransmitter release, small subset of fast excitatory transmission, neuroinflammation



Hypotheses about what blocking these receptors might do

- > Blockage of normal and pathological tau uptake in neurons
- > Altered equilibrium between amyloidogenic and nonamyloidogenic APP processing
- > Animal studies suggest that muscarinic antagonism may decrease both short and long-term potentiation

Proof-of-Concept experiment


Add ACh treatments: 8 drugs 2 doses 2 timepoints <u>Measure:</u> Cytotoxicity,

WT Neurons

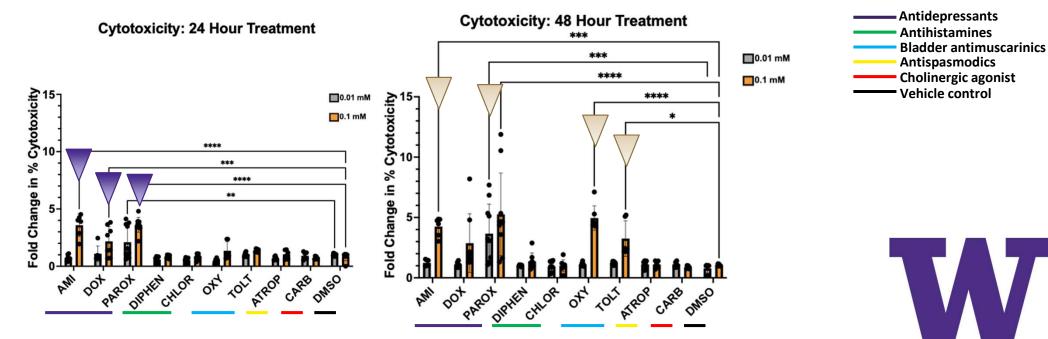
AD Neurons (APP Swedish Mutation)

Proof-of-Concept experiment

AD Neurons (APP Swedish Mutation) •

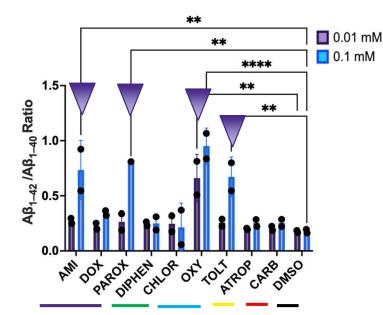
Drugs tested:

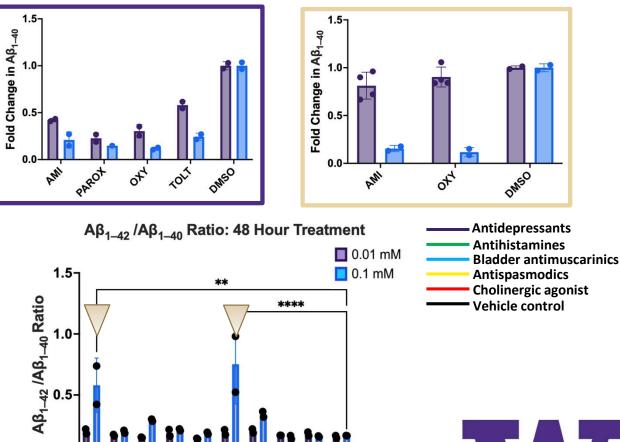
• Antidepressants:


Amitriptyline Doxepin

- Paroxetine
- Antihistamines Diphenhydramine Chlorpheniramine
- Bladder antimuscarinics Oxybutynin Tolterodine
- Antispasmodics Atropine

Results


> Cytotoxicity



Results

> Amyloid Beta

 $A\beta_{1\!-\!42}\,/A\beta_{1\!-\!40}$ Ratio: 24 Hour Treatment

AND DOT ROT DIPHEN OF OT TO TROP ARD MSO

0.0

Results

> Summary

Table 1.	Association found in observational studies	Neurotoxicity in stem cell-derived neurons
Antidepressants_	Yes: Positive Association	
Amitriptyline		Dose-dependent
Doxepin		Dose & time dependent
Paroxetine		Dose & time dependent
<u>Antihistamines</u>	No	
Diphenhydramine		None
Chlorpheniramine		None
Bladder antimuscarinics	Yes: Positive Association	
Oxybutynin		Dose & time dependent
Tolterodine		None
Antispasmodics_	No	
Atropine		None

Dose and time-dependent effects

- > Examining dose and time dependence may clarify nuances in how drugs exert effects on AD phenotypes.
- > Differences in molecular pathways that lead to neurotoxicity or changes in APP processing may occur at specific concentrations or exposure periods.

Conclusions

> Cytotoxicity differs by class and between individual drugs of the same class

 Antidepressants and bladder antimuscarinics demonstrated toxicity while antihistamines and antispasmodics did not, matching population study findings

> Drugs demonstrating toxicity increased the ratio of secreted AB42/40 in a dose- and time-dependent manner

Future work

- > Testing in ACT participant cell lines
 - 23 hiPSC lines generated
 - 12 AD/11CTL: Neuropathological Diagnosis
 - 10 Male/13 Female

Future work

- > Experiments testing engagement of pathways involved in muscarinic antagonism and/or off-target effects of each drug
- > Assays for different proteins involved in amyloid processing
- > Dose-response for drugs demonstrating toxicity

Project Team:

UW

Shelly Gray, PharmD, MS Jessica Young, PhD Tiara Schwarze-Taufiq, BS Doug Barthold, PhD Paul Crane, MD, MPH Caitlin Latimer, PhD C. Dirk Keene, MD, PhD Eric Larson, MD, MPH Christine MacDonald, PhD

KPWHRI

Onchee Yu, MS Nicole Gatto, PhD Kelly Meyers, BA Sundary Sankaran, BA **Chart abstraction team** Ann Kelley, MHA Leslie Nemerever, BFA Jennifer Covey, BS Camille Campbell, BA Becky Lederman, BSN Leigh Sheridan, MPHc

