Quantitative Measurements of magnetic resonance Angiography Decrease with Aging and Cognitive Decline in the ACT cohort.

Robert Ritchie¹, Max Kobiesa², Gador Canton¹ PhD, Kaiyu Zhang², Thomas Hatsukami³ MD, Jalal Andre¹ MD, Esther Yuh⁴ MD, Mahmud Mossa-Basha¹ MD, Paul Crane⁵ MD, Christine McDonald⁶ PhD, Chun Yuan^{1,7} PhD, Cecilia Lee⁸ MD, Niranjan Balu¹ PhD

¹Radiology, University of Washington
²Bioengineering, University of Washington
³Vascular Surgery, University of Washington
⁴Radiology, University of California San Francisco
⁵Internal Medicine, University of Washington
⁶Neurosurgery, University of Washington
⁷Radiology, University of Utah
⁸Opthalmology, University of Washington

Vascular causes of dementia

ladecola C. et al, Neuron 2013

Intracranial Feature Extraction Tool (iCafe)

- Enables large vessel perfusion assessment from MR angiography (MRA)
- Features measured: Artery length, tortuosity, branch number, intensity

3

Distal artery blood flow

iCafe Measurements using TOF are reproducible

TOF MRA Image Reconstructed Image ICA_ M1 M1_R M2 R . A2_L AComm PI P2_R PComm_R

Eastures	Inter-scan				
reatures	Mean+-SD	ICC	95% CI	CV	
Total Length (mm)	2639.7+-636.2	0.97	0.94-0.99	4.03%	
Total Volume (mm3)	7597.2+-2259.6	0.92	0.82-0.96	8.78%	
Proximal Length (mm)	98.8+-16.9	0.96	0.91-0.98	3.29%	
Distal Length (mm)	2469.5+-625.5	0.97	0.93-0.99	4.39%	
Total Branches	126.3+-30.4	0.92	0.83-0.97	6.81%	
Average M1 Radius	1.7+-0.2	0.91	0.81-0.96	4.12%	
Average Normalized Intensity	880.8+-215.2	0.96	0.91-0.98	4.96%	
Average Normalized Intensity for large arteries	1535.2+-598	0.97	0.92-0.99	6.85%	

Second Scan

First Scan

Chen et al, MRI, 2019

iCafe measurements track aging

163 normal participants (56–85 years) from Cardiovascular Risk of Older Population (CROP) Study iCafe indicates decreasing brain blood flow with age

- Decrease in distal vessel length
- Decrease in number of distal branches and branch order
- Increase in vessel tortuosity

Chen L et al, Neurobiol Aging, 2019

iCafe measures are indicative of cognitive function

Subjects with asymptomatic carotid disease

Association of iCafe measures with MoCA

	Adjusted for ASL CBF			Adjusted for PC CBF		
	β	Р	Adjusted R ²	β	Р	Adjusted R ²
TOF, artery length	0.484	0.018	0.452	0.441	0.014	0.492
SNAP, artery length	0.366	0.220	0.331	0.329	0.129	0.392
TOF, number of branches	0.527	0.007	0.493	0.496	0.012	0.502
SNAP, number of branches	0.600	0.047	0.406	0.441	0.056	0.431
TOF, average tortuosity	-0.182	0.283	0.319	-0.164	0.318	0.352
SNAP, average tortuosity	-0.046	0.792	0.282	-0.037	0.830	0.321

Also adjusted for age, carotid stenosis, use of hypertensives, systolic bp

Chen Z et al, Sci Reports, 2021

iCafe measures are indicative of cognitive decline

Zhang K et al, MRI, 2023

iCafe measures are indicative of cognitive decline

Zhang K et al, MRI, 2023

The Adult Changes in Thought (ACT) Study recruits participants from random samples of Kaiser Permanente Washington (previously Group Health) health plan members who meet the following criteria:

- At least 65 years of age
- Do not have dementia
- Do not reside in a nursing home
- Enrolled in the health plan for at least 2 years
- Primary health care clinic is in the greater Seattle area of King County

Since its inception in 1994, the ACT Study has recruited an Original Cohort (2,581 participants recruited from 1994 to 1996), an Expansion Cohort (811 participants recruited from 2000 to 2003), and a Replacement Cohort (2,371 participants recruited from 2004 to the present). The ongoing recruitment of new participants into the ACT Study as part of the Replacement Cohort is designed to maintain a study cohort of ~2,000 participants without dementia who are actively undergoing biennial follow-up.

Characteristic	N = 128 ⁷
age	80 (75, 84)
male	
Female	69 (54%)
Male	59 (46%)
education	16.0 (13.0, 18.0)
casi_irt	-0.01 (-0.56, 0.76)
Unknown	3
length	1,057 (909, 1,266)
tortuosity	1.51 (1.43, 1.61)
leuk_arwmc_total	5.0 (2.0, 7.0)
acute_infarct	
1	18 (14%)
2	2 (1.6%)
3	105 (82%)
4	3 (2.3%)
chronic_infarct_present	26 (20%)
¹ Median (IQR); n (%)	

ACT TOF MRA from Clinical Scans

Clinical MRI at different hospitals, different scanners and different MRI protocols

ACT TOF MRA Challenges

- Differences in
 - FOV
 - Resolution
 - Fat suppression
 - Sequence parameters

AiCafe: Automatic centerline tracing

Chen L. et al, MICCAI 2021

AiCafe: Automatic centerline tracing

Chen L. et al, MICCAI 2021

AiCafe on ACT-MRA

- Clinical MRA with different resolution, coverage and signal intensity
- Needed manual correction
- Two readers corrected traces and labeled all AiCafe tracings

AiCafe tracings without correction

Corrected MRA tracings

Uncorrected

Corrected

Results

Characteristic	N = 128 ⁷
age	80 (75, 84)
male	
Female	69 (54%)
Male	59 (46%)
education	16.0 (13.0, 18.0)
casi_irt	-0.01 (-0.56, 0.76
Unknown	3
length	1,057 <mark>(</mark> 909, 1,266
tortuosity	1.51 (1.43, 1.61)
leuk_arwmc_total	5.0 (2.0, 7.0)
acute_infarct	
1	18 (14%)
2	2 (1.6%)
3	105 (82%)
4	3 (2.3%)
chronic_infarct_present	26 (20%)
¹ Median (IQR); n (%)	

Relationship of distal vessel length with age and education in ACT

Higher total cerebral artery length was associated with lower age

Higher total cerebral artery length was associated with higher number of years of education

Cognitive scoring in ACT: CASI IRT score

- Measure of cognition in ACT subjects
- CASI: 40-item global cognitive test, total score of 0 – 100
- CASI IRT: Scaled CASI, approximately mean 0 and standard deviation (SD) 1
- We used CASI score closest to the date of clinical MRI scan

Ge Li et al, J Am Geriatr Soc. 2017 Dec; 65(12): 2627–2633.

Distal PCA Length is related to Cognitive impairment

- Total distal artery length was not associated with cognition
- Our prior studies have also shown distal PCA length to be associated with cognition¹

R=0.23, P<0.01

1. Zhang K et al, MRI, 2023

Cognition is related to age and education

• When examined in a multivariable regression, only age and education remained significant predictors of CASI scores.

Conclusions

- Distal vessel length is lower with higher age in ACT
 - Reduced blood flow to the brain
- Factors affecting cognition in ACT
 - Age
 - Education level
 - (Posterior cerebral artery length)
- Clinical MRA non-ideal for iCafe measures
 - Heterogenous protocols
- Research MRI scans ongoing
 - Neuroimaging Core

http://drleasure.com

Acknowledgements

Vascular Imaging Lab, University of Washington, Seattle

- Mahmud Mossa-Basha, MD
- Niranjan Balu, PhD
- Chun Yuan, PhD
- Thomas Hatsukami, MD
- Baocheng Chu, MD PhD
- Maria Gador Canton, PhD
- Daniel Hippe, MS
- Dongxiang Xu, PhD
- Duygu B Geleri, MD
- Mona Kharaji, MD
- Mohamed Mosi, MD
- Ahmed Safwat, MD
- Mohammed Dawood, MD
- Kristi Pimentel
- Tong Zhu
- Yin Guo
- Kaiyu Zhang
- Xin Wang
- Robert Ritchie
- Max Kobiesa

ACT Neuroimaging

•Paul Crane, MD •Cecilia Lee, MD Christine MacDonald, PhD •Jalal Andre, MD •David Hunt, PhD •Missy Takahashi •Ariel Rokem, PhD •Kelly Chang, PhD •James Ralston, MD •Patti Curl, MD •Margaret Dezelar, MS Luke Burke •John Ewing •Bradley Howlett •Nina LaPiana •Samantha Tuesta

R01HL103609 R01NS125635 R01NS127317

Additonal Slides

Group 1

Group 2

