Alzheimer's Blood-Based **Biomarkers: Ready for Prime** Time?

MICHELLE M. MIELKE, PHD CHAIR, DEPARTMENT OF EPIDEMIOLOGY AND PREVENTION

Disclosures

- Research funding: NIH/NIA, Department of Defense, Alzheimer's Association, Davos Alzheimer's Consortium
- Senior Editor: Alzheimer's Research and Therapy
- Scientific Review Board: Alzheimer's Drug Discovery Foundation
- Consultant/Advisory Board: Biogen, Eisai, LabCorp, Lilly, Merck, Novo Nordisk, Roche, Siemens Healthineers, Sunbird Bio

Outline

- Why do we need biomarkers?
- Current availability of blood-based biomarkers
- Ready for Prime Time?
 - Factors that need to be considered for interpretation
 - Implementation of blood-based biomarkers at the population level

Why Blood-Based Biomarkers?

000

Need for biomarkers to diagnosis AD

• AD historically defined as a "clinical-pathologic" entity

- 'Definite' at autopsy; 'possible'/'probable' clinically (McKhann G, et al. Neurology 1984)
- A clinical syndrome does not specify etiology
- Biological definition (amyloid, tau, neurodegeneration) could provide greater understanding of underlying mechanisms
 - Especially important for clinical trials
- New imaging and fluid technology make the in vivo diagnosis more feasible
 - AT(N) research framework (Jack CR, et al. Alz Dem 2018)
 - CSF and PET biomarkers

Blood-based biomarkers

- Technological advances leading to blood-based biomarkers for Alzheimer's disease (AD) are an incredible accomplishment
 - Less invasive, less costly, fewer contraindications
 - More accessible compared to PET and CSF (e.g., rural areas; primary care vs specialist)

- Multiple studies show the potential clinical utility of plasma measures of amyloid-beta 40 and 42 and phosphorylated tau as biomarkers of AD pathology
 - Aid in diagnosis of AD for symptomatic individuals

BBM tests in clinical use or under development

			Phase 4: prospe Phase	Phase 1: preclinical exploratory studies ective studies, longitudinal studies, and real-world performance e 5: implementation and impact on clinical outcomes			
			Phase 2	Phase 3	Current status		
			Assay development				
Manufacturer/test	Test components	Assay	and analytical				
name	(analytes)	platform	validation	Retrospective studies	RUO	CLIA	IVD status
C ₂ N/Precivity	Aβ42/40+ APOE (+age)	IP-LC-MS/MS	Kirmess et al. ¹⁴⁸	clinical performance evaluated in a cross-validation type of study, ³⁹ as well as in an independent cohort ¹⁴⁹		х	granted Breakthrough Device designation by FDA ¹⁵⁰
Quest/AD-Detect	Αβ42/40	IP-LC-MS/MS	unpublished	unpublished		х	
Araclon/ABtest-IA	Αβ42/40	immunoassay	Pérez-Grijalba et al. ¹⁵¹	clinical performance evaluated in a few discovery-type studies ^{151,152}		CE mark	
Araclon/ABtest-MS	Αβ42/40	LC-MS	unpublished	clinical performance evaluated in a few discovery-type studies ^{57,153}	х		
Quanterix	Αβ42/40	Simoa	Song et al. ¹⁵⁴	clinical performance evaluated in a few discovery-type studies ^{53,71,100,101,118,155}	х		
Sysmex	Αβ42/40	HISCL	Yamashita et al. ¹⁵⁶	clinical performance evaluated in a validation-type study where discovery and validation populations are from the same cohort ¹⁵⁷	х		
Shimadzu	Aβ-based composite	MS	unpublished	clinical performance evaluated in a few studies, including a validation-type study ^{50,57,155}	х		
Roche/Amyloid Plasma Panel	pTau181+ APOE4	Elecsys	unpublished	clinical performance evaluated in a discovery-type study ¹¹⁵	х		granted Breakthrough Device designation by FDA ¹⁵⁸
Eli Lilly	pTau181	MSD, Simoa	Bayoumy et al. ⁸⁹	clinical performance evaluated in discovery-type studies ^{77,86,89,90,100,105,110}		х <u>а</u>	
Adx	pTau181	Simoa	Bayoumy et al. ⁸⁹	clinical performance evaluated in discovery-type studies ^{89,110}	х		
Quanterix	pTau181	Simoa	Karikari et al. ⁷⁶; Bayoumy et al. ⁸⁹	clinical performance evaluated in discovery-type studies ^{89,90}		х	granted Breakthrough Device designation by FDA ¹⁵⁹
Fujirebio	pTau181	Lumipulse G	unpublished	clinical performance evaluated in a discovery-type study ¹¹⁰	х		
Eli Lilly	pTau217	MSD, Simoa	Bayoumy et al. ⁸⁹	clinical performance evaluated in a few studies, including cross-validation studies ^{71,89,90,100,105,110,114,160}	х	Х <u>а</u>	
Janssen	pTau217	Simoa	Triana-Baltzer et al. ¹⁶¹	clinical performance evaluated in discovery-type studies ^{110,160,161,162}	Х		
Adx	pTau217	Simoa	Bayoumy et al. ⁸⁹	clinical performance evaluated in a discovery-type study ⁸⁹	х		
Adx	pTau231	Simoa	Bayoumy et al. ⁸⁹	clinical performance evaluated in a discovery-type study ⁸⁹	х		

Hampel et al. Neuron 2023

Some currently available blood tests for AD

Mass-spec based

- C2N: Precivity 1 and 2
- Quest: AD-Detect; p-tau217
 - DTC test no longer available
- Immunoassays cpt codes for reimbursement
 - Labcorp: Sysmex amyloid-beta 42/40, Roche p-tau181, Roche NfL, Fujirebio ptau217
 - Jensen ptau217 on simoa HD-X (Quanterix)
 - Alzpath ptau217 on simoa HD-X

Performance of BBM tests

Plasma Aβ42/40 tests

Plasma p-tau tests

Brand et al. Alz Res Ther 2023

Typical dementia patient (US)

- Average age of dementia onset is 83.7 years (Plassman et al., 2011)
- ~60% of older adults with AD have three or more chronic conditions (Sanderson et

al. 2002; Poblador-Plou et al. 2014)

- Prevalence of chronic conditions even higher among African American and other underrepresented minorities as well as individuals of lower SES
- Chronic conditions and frailty are also risk factors for AD
 - Affect the expression of AD pathology with regards to cognitive function, disease stage, and neuropathological burden (Wallace et al, 2019; Calvin et al, 2022; Ben Hassen et al, 2022)
- Polypharmacy often co-occurs with multiple chronic conditions, further affecting cognitive function
- Difficulty to diagnose dementia and dementia type in primary care, and to predict disease progression
 - Estimated 50-70% of symptomatic patients with ADRD are not recognized or incorrectly diagnosed in primary care (Hansson, 2022)
 - Limited capacity of ADRD specialists [Mattke et al 2022]
 - Older adults with multiple chronic conditions less likely to be referred
 - PCPs often sole care provider

Factors associated with plasma P-tau181 and Ptau217

Mielke MM, et al. Nature Medicine 2022

The academic core of Atrium Health

NfL and GFAP related to eGFR

Murray M & Mielke MM, unpublished

Mitigating effects of CKD for interpretation

Figure 1. Associations of Plasma of Phosphorylated Tau (p-tau) 217, Tau212-221, and pT217/T217 With Chronic Kidney Disease (CKD) and Amyloid-β (Aβ) Status

Janelidze S et al. JAMA Neurology 2023

Mielke MM, et al. Nature Medicine 2022; Pichet Binette, et al. Alz Dem 2022

Wake Forest University School of Medicine

NFL and GFAP related to BMI

Blood amyloid and cardiac conditions

- Amyloid-beta (Aβ) accumulates in heart of AD patients and induces ADrelated cardiac amyloidosis (Troncone L et al. 2016; Schaich CL et al. 2019)
- Higher levels of plasma Aβ40 and Aβ42 associated with incident heart failure (Zhu F et al, 2023)
- Sacubitril (Neprilysin inhibitor + valsartan) lowers plasma Aβ42/40 ratio (Brum WS et al. 2023), but not CSF Aβ42/40 ratio (Langenickel TH et al, 2016)

Impact of fasting status?

Biological Variation

Brum WS et al. Alz Dem 2024

The academic core of Atrium Health

Summary

CKD increases AD blood-based biomarkers

- Physiological vs. risk factor
- Lack of correct interpretation could lead to false positive diagnosis

Increasing BMI associated with lower levels of biomarkers

- Unclear how to consider this factor ratios could help but may need to ascertain recent weight gain or loss; use of GLP-1 agonists?
- Need to examine multiple conditions effects of CKD and high BMI on the blood levels; additional medications

Develop an algorithm?

 Need further examination of blood amyloid-beta levels in context of cardiac function and medications

Triage vs Confirmation

care by eliminating the need for confirmatory CSF / PET testing

_____<u>v</u>

care by eliminating the need for confirmatory CSF / PET testing

Plasma as good as CSF?

Interpretation and Limitations

- Results suggest plasma could be as good as CSF, but.....
 - All assays done in batch not prospectively obtained and assayed individually
 - Not real-world
 - Mean age ~70 and healthier than general population
 - Ability to undergo both PET and CSF highly unique group
 - Very little/no racial/ethnic diversity
- Not enough evidence to use as a confirmatory diagnostic

When to use and how to implement?

000

Diagnostic considerations?

- AD pathologies begin decades prior to symptoms and increase with age
 - Possibility of positive test being incidental
 - A blood test in isolation of a clinical assessment for cognitive changes should *not* be done
 - Need objective evidence of cognitive impairment, and not just subjective changes, prior to having a blood test
- Positive blood biomarker test may indicate AD pathology but the true 'cause' of symptoms?
 - Multiple brain pathologies increase with age 'pure AD' rare in older adults
 - Potential for sub-optimal treatment due to disregard for other pathologies?
 - Continued education to focus on the patient as a whole treatment of vascular risk factors may be most helpful

Ethical Aspects

- Given ease of obtaining blood biomarkers (vs. CSF or PET), what is the cost-benefit ratio of assessing AD pathology among individuals with multiple chronic conditions and limited life expectancy
 - What about those who may not tolerate IV infusion or who cannot afford it?
 - Those who have contraindications to CSF/PET or who don't want further testing?
 - Guidelines need to be developed (in line with patient input)
- Impact of including biomarker result in medical record
 - Results immediately available to patients in patient portal
 - Poses much concern with understanding of biomarker vs. disease and stigma
 - Driving, long-term care insurance, other legal ramifications?
 - Arias JJ et al JAMA Neurology 2023 impact of GINA
 - Need to disclose potential effects of a diagnosis prior to blood test time/reimbursement

Patient preference

- Critical need for qualitative studies to understand what patients, families and caregivers across diverse settings understand about biomarkers, and what they want to know and when
- Access if can't afford further tests/follow-up or don't want is it ethical to just do a blood draw? How might this enhance health disparities?

- We are at an unprecedented time with DMTs for AD and the use of blood-based biomarkers
 - Primary care will have a critical role
- Although blood AD biomarkers are promising, many questions remain. Yet, they are available and already used in the real-world including primary care
 - While funding is needed to continue discovering new and better biomarkers, funding for how to use and implement in the general population – especially diverse populations - is also critical
 - Poor implementation (e.g., too many false positives, increased stigma) will lose trust of patients/providers!
 - Need to educate amyloid pathology vs symptomatology
- We need guidelines with patient and HCP input
 - How and when to implement
 - i.e., objective cognitive impairment and not in isolation, patient preference/choice
 - How to interpret
 - i.e., multiple chronic conditions
 - Need to include primary care providers, including both academic and non-academic affiliated in discussions of how to move forward – what are the barriers?
- Several ethical and other aspects must also be considered prior to widespread use of blood biomarkers at the population level

Mielke.Michelle@wakehealth.edu

