Blood-based Biomarkers in Alzheimer's Disease and Related Dementias

National Centralized Repository for Alzheimer's Disease and Related Dementias Kristen A. Russ, PhD NCRAD Biomarker Assay Lab Director Assistant Research Professor, MMGE, IUSM

Overview

- Part I
 - Blood-based biomarker background
- Part II
 - NCRAD Biomarker Assay Lab
- Part III
 - Use of plasma biomarkers in historical study

Blood-based Biomarkers

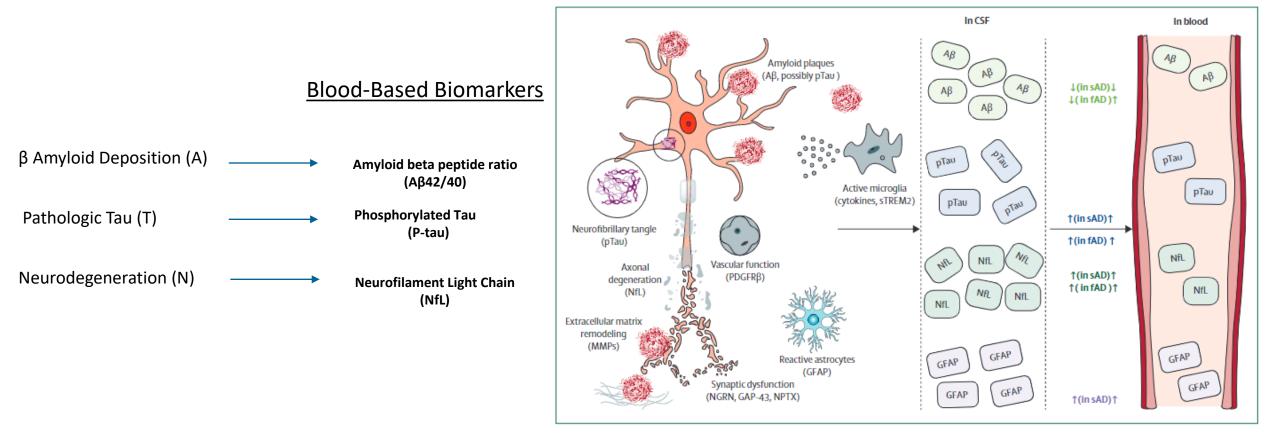
AT(N) Framework for AD

- NIA-AA Research Framework defines AD by pathological processes documented by postmortem examination or by presence of *in vivo* biomarkers
 - AT(N) classification system
 - $A = \beta$ amyloid deposition
 - T = Pathologic tau
 - N= Neurodegeneration
 - Assessing subjects for AT(N)
 - Neuropathology
 - Imaging
 - Fluid based biomarkers

Risk of short-term cognitive decline based on the biomarker profile and cognitive stage

		Syndromal C	ognitive Stage			
		Cognitively unimpaired	MCI	dementia		
	A ⁻ T ⁻ (N) ⁻ normal AD biomarkers, cognitively unimpaired		normal AD biomarkers with MCI	normal AD biomarkers with dementia		
Profile	A ⁺ T ⁻ (N) ⁻	Preclinical Alzheimer's pathologic change	Alzheimer's pathologic change with MCI	Alzheimer's pathologic change with dementia		
Biomarker Profile	A ⁺ T ⁻ (N) ⁺ Alzheimer's and concomitant suspected non Alzheimer's pathologic change, cognitively unimpaired		Alzheimer's and concomitant suspected non Alzheimer's pathologic change with MCI	Alzheimer's and concomitant suspecter non Alzheimer's pathologic change with dementia		
	A ⁺ T ⁺ (N) ⁻	Preclinical Alzheimer's	Alzheimer's disease with MCI	Alzheimer's disease		
	$A^{+}T^{+}(N)^{+}$	disease	(Prodromal AD)	with dementia		

Non-Alzheimer's continuum profiles are not included in table because the risk associated with different combinations of T+(N)-, T+(N)+, T-(N)+ among A- individuals has not been established


Jack et al., 2018

rate of short term clinical progression expected to be low

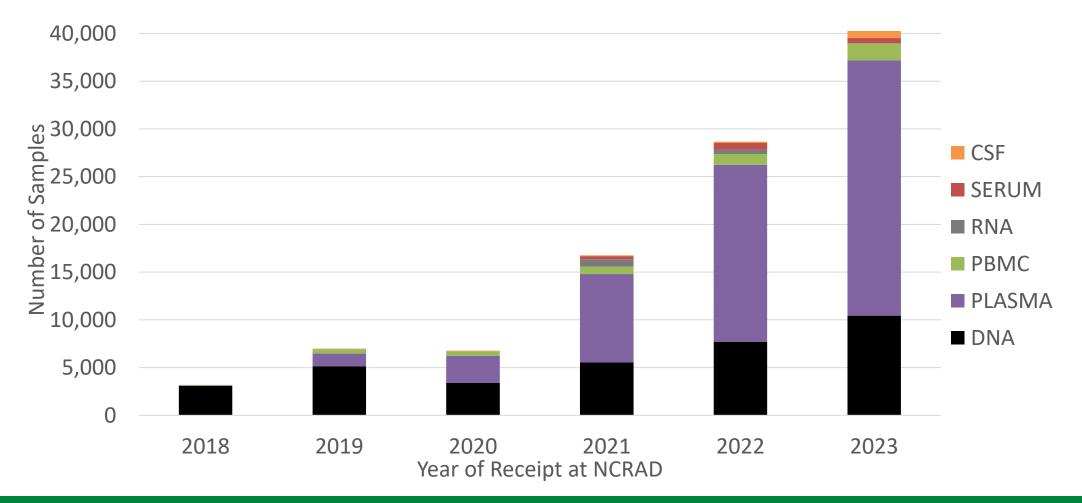
rate of short term clinical progression expected to be high

Application of Blood-based AD Biomarkers to NIA Research Framework

Teunissen et al., 2022

2023 Draft Update to the Framework for AD

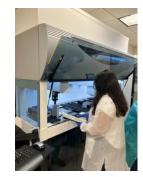
- Things have changed since the 2018 NIA-AA AT(N) Research Framework development
 - Drugs targeting core pathology have been approved for treatment
 - Plasma biomarkers have been studied and are more reliable
 - Studies have shown not all fluid biomarkers are equivalent for intended uses
- Framework update intended to be a resource reflecting current science
 - Not specific clinical practice guideline


Biomarker category	CSF or plasma analytes	Imaging						
Core Biomarkers								
Core 1								
A (Aβ proteinopathy)	Αβ42	Amyloid PET						
T1: (phosphorylated and secreted AD tau)	p-tau 217, p-tau 181, p- tau 231							
Core 2	•	·						
T ₂ (AD tau proteinopathy)	pT205, MTBR-243, non- phosphorylated tau fragments	Tau PET						
Biomarkers of non-specific p	processes involved in AD pa	thophysiology						
N (injury, dysfunction, or degeneration of neuropil)	NfL	Anatomic MR or CT, FDG PET						
I (inflammation) Astrocytic activation	GFAP							
Bio	markers of non-AD co-pat	hology						
V vascular brain injury		Anatomic infarction, WMH						
S α-synuclein	αSyn-SAA*							

Alzheimer's Association workgroup, 2023

Biomarker Use in Research

Plasma collection and banking at NCRAD in recent years as plasma biomarkers have been increasingly incorporated into research studies



NCRAD Biomarker Assay Lab (BAL)

- Leadership and Personnel
 - Scientific Director- Jeff Dage, PhD
 - Internationally recognized leader in the biomarker field with expertise in the development of novel biomarkers
 - Provides overall scientific leadership of the BAL
 - NCRAD Co-investigator

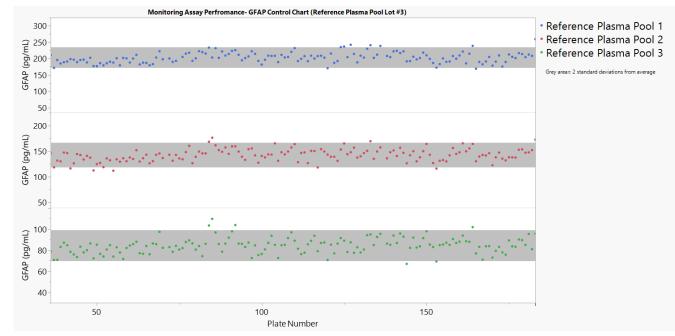
- Laboratory Director- Kristen Russ, PhD
 - Expertise in a wide range of assay platforms
 - Provides leadership day to day for operation of the BAL
 - NCRAD Co-investigator
- Laboratory Coordinator- Clairisa Stayton
 - BAL specific project coordinator to interface with researchers and allow for blinding of the lab to sample specific information
- Laboratory Staff
 - Research Assistant and 3 laboratory technicians
 - Trained in operation of state-of-the-art instrumentation and sample processing/handling SOPs

- Equipment
 - Automated liquid handling
 - Tecan Fluent (2)
 - Decreases variability during assay processes
 - Immunoassay platforms
 - Quanterix HD-X
 - For use with Quanterix Simoa HD-X kits
 - Excellent sensitivity and low variability for AD biomarkers
 - Fujirebio Lumipulse G1200
 - For use with plasma or CSF

Assay Kits	Biofluid	Platform	Biomarkers	Qualification Status
NF-Light Advantage Kit	Plasma	Quanterix Simoa HD-X	NfL	Complete
Neurology 2-Plex B (N2PB)	Plasma	Quanterix Simoa HD-X	NfL, GFAP	Complete
Neurology 4-Plex E (N4PE)	Plasma	Quanterix Simoa HD-X	NfL, GFAP, Abeta 40, Abeta 42	Complete
pTau 181 v2.1 Advantage Kit	Plasma	Quanterix Simoa HD-X	pTau 181	Complete
pTau 217 Alzpath	Plasma	Quanterix Simoa HD-X	pTau 217	Complete
Lumipulse G β-Amyloid 1-42 Kit	Plasma	Fujirebio Lumipulse	Abeta 42	Complete
Lumipulse G β-Amyloid 1-40 Kit	Plasma	Fujirebio Lumipulse	Abeta 40	Complete
Lumipulse G pTau 181 Kit	Plasma	Fujirebio Lumipulse	pTau 181	Complete
Lumipulse G pTau217 Kit	Plasma	Fujirebio Lumipulse	pTau 217	Upcoming
Lumipulse G β-Amyloid 1-42 Kit	CSF	Fujirebio Lumipulse	Abeta 42	Upcoming
Lumipulse G β-Amyloid 1-40 Kit	CSF	Fujirebio Lumipulse	Abeta 40	Upcoming
Lumipulse G pTau 217 Kit	CSF	Fujirebio Lumipulse	pTau 217	Upcoming

* Funds available for diverse studies interested in collection and banking of plasma

Bridging and control measures are key to consistency of data across time


- Control measures
 - Identify assay performance outside established quality guidelines
 - Confirms validity of assay results
- Bridging
 - Allows comparison of data between studies
 - Necessary to fully harmonize laboratories

- Assay monitoring within studies and over time
 - Reference pools
 - BAL produces plasma reference pool controls from our local plasma collections
 - High, medium, and low controls
 - Allows monitoring of assay performance within the batch and between batches
 - Kit QC low and high samples
 - Provided by manufacturer of kits
 - Allows BAL to determine that the assay is working properly from plate to plate

• Bridging

- Utilizes BAL local collection of plasma
- 31 samples per bridging plate
- Controls for variation in lot and instrument performance

NCRAD cross-laboratory harmonization efforts

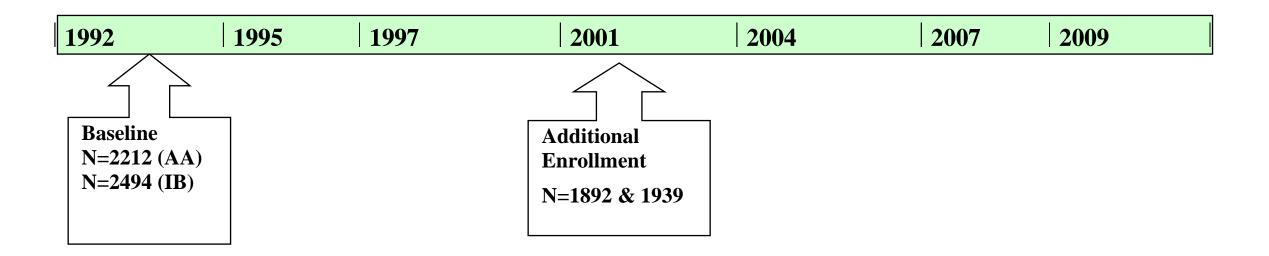
- Harmonization is possible but has become more challenging with the widespread deployment of new assays across many research biomarker laboratories
- Quality assurance system is an important factor every lab will need to properly harmonize
- NCRAD is leading a cross-laboratory harmonization effort
 - Initial organization stages have begun
 - Local collection of samples is underway

Fluid-based biomarkers: Value of current technology in historical samples

Indianapolis-Ibadan Dementia Project

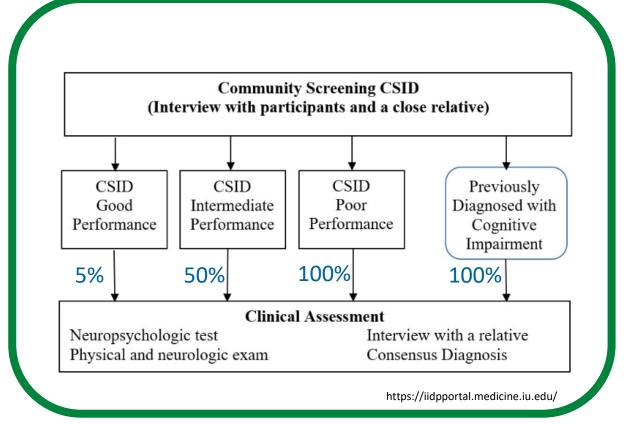
Indianapolis-Ibadan Dementia Project (IIDP)

- Prospective population based comparative epidemiological study of the prevalence, incidence rates, and risk factors for Alzheimer's Disease and other age associated dementias
- Study ran from 1991-2011
- Enrolled Participants (age >65 years)
 - African Americans living in Indianapolis
 - Yoruba living in Ibadan, Nigeria



https://iidpportal.medicine.iu.edu/

IIDP Study Timeline



- Total numbers of participants: 4104 African Americans; 4433 Yoruba
- Up to 7 longitudinal evaluations over 19 years
- Two-phase sampling was used at each evaluation wave

IIDP Study Design

Time line	1992	1995	1997	2001*	2004	2007	2009
Stage 1: Screening	n ₁ =2212	n ₁ =1667	n ₁ =1253	n ₁ =2628	n ₁ =1821	n ₁ =1245	n ₁ =958
0 0	n ₂ =2486	n ₂ =2113	n ₂ =1227	n ₂ =2806	n ₂ =2180	n ₂ =1701	n ₂ =1273
Interview with participants							
Demographic	х	х	х	х	х	х	х
Cognitive Assessment	х	х	х	x	х	х	х
Depressive Symptoms						х	х
Neurological tests			х	х	х	х	х
Lifestyle	х	х	х	x	х	х	х
Medical History	х	х	х	х	х	х	х
Medications				х	х	х	х
Vital Measurements			х	x	х	х	х
Engagement			х	x	х	х	х
Questionnaire							
Interview with relatives							
Changes in daily	х	х	х	х	х	х	х
activity							
Activity of Daily Living	х	х	х	х	х	х	х
Change in personality	х	х	х	х	х	х	х
General Health	х	х	х	х	х	х	х
Stage 2: Clinical Evaluation							
Neuropsychological test	х	х	х	х	х	х	х
Geriatric Depression	х	x	х	x	х	x	х
Scale (0-30)							
Functional Assessment	х	х	х	х	х	х	х
(CHIF)							
Physical Examination	х	x	х	x	х	x	х
Neurological Exam	х	х	х	x	х	х	х
Consensus diagnosis	х	х	х	х	х	х	х
Blood Samples				x			
DNA samples are stored at the			Repository	for Alzhein	ner Disease	(NCRAD)	
GWAS, Whole Genome Sequ							
Plasma levels of cholesterol, t	riglyceride,	HDL, LDL	, 8-isoprost	tane, CRP,	PAI-1, E-se	electin, hom	ocysteine,
Folate, and vitamin B1212							

Cross-sectional blood collection in 2001!

IIDP Findings

- Key Findings
 - AD most common type of dementia at both sites
 - Association between age and incident AD at both sites
 - Inter-site difference with respect to sex and risk of incident AD
 - Indianapolis cohort had a higher BMI and higher prevalence of diabetes and smoking
 - APOE effect differences between sites

 Table 5. Age-Specific Annual Incidence Rate of Dementia and Alzheimer Disease, Adjusted for

 Mortality*

		Yoruba	African Americans		
	Age Group, y	Rate, % (95% Confidence Interval)†	Rate, % (95% Confidence Interval)†		
Dementia	65-74	0.45 (0.30-0.60)	1.74 (0.15-3.32)		
	75-84	1.69 (1.29-2.10)	4.29 (2.52-6.06)		
	≥85	5.71 (4.19-7.22)	9.12 (5.97-12.28)		
	Age-standardized overall rate	1.35 (1.13-1.56)	3.24 (2.11-4.38)		
Alzheimer disease	65-74	0.38 (0.24-0.52)	1.38 (0-2.99)		
	75-84	1.41 (1.04-1.77)	3.29 (1.56-5.01)		
	≥85	5.02 (3.62-6.42)	7.07 (4.54-9.61)		
	Age-standardized overall rate	1.15 (0.96-1.35)	2.52 (1.40-3.64)		

The overall rates (standardized for age) were derived using the age distributions of African Americans in Indianapolis, Ind, according to the 1990 US Census Bureau data.

†The 95% confidence intervals are narrower in Yoruba than in African Americans' incidence rate because the incidence rate in Yoruba was lower.

> Hendrie HC, et al., 2001 Ogunniyi, et al. 2006 Hendrie, et al. 2014

IIDP Findings

- Blood collected in 2001 wave was processed to plasma
 - Utilized to investigate assessed cholesterol, HDL, LDL, PAI-1, E-selectin, 8isoprostane, homocysteine, folate, Vitamin B12, and C-reactive protein in IIDP participants
 - Findings include differences between bio-measures for cardiovascular disease risk
 - Lower lipid levels in Ibadan
 - Higher oxidative stress in Ibadan

Current Biomarker Analysis of Historical Samples

- Plasma samples were stored from the original 2001 collection at NCRAD
 - Samples were stored at -80C for ~22 years
- Plasma was analyzed in the NCRAD BAL
 - NfL, GFAP, Aβ40, Aβ42, and Ptau181
 - Quanterix Simoa HD-X

		Study Dem	ographics		
	Full Ibadan Study	Ibadan Biomarker Subset	Full Indianapolis Study	Indianapolis Biomarker Subset	
Ν	4425	1093	4105	1017	
Sex	F: 2913; M: 1512	F: 733; M: 360	F: 2667; M: 1438	F: 683; M: 334	
Age at Baseline, mean ± sd	73.9 ± 7.1 (n=4425)	73.4 ± 5.7 (n= 1093)	75.8 ± 6.6 (n=4105)	75.6 ± 5.9 (n=1017)	
Age at 2001 Screening, mean ± sd	76.8 ± 5.8 (n=2806)	76.4 ± 5.4 (n= 1093)	78.2 ± 5.8 (n=2648)	77.7 ± 5.4 (n=1016)	
Age at Blood Draw, mean ± sd	77.8 ± 5.4 (n=1234)	77.8 ± 5.4 (n=999)	78.1 ± 5.5 (n=1512)	78.2 ± 5.5 (n=831)	
Age at Diagnosis, mean ± sd	N/A	81.5 ± 5.6 (n=1093)	N/A	82.6 ± 5.5 (n=1017)	
APoE, n (%)	E2/E2 29 (1.3%) E2/E3 310 (13.7%) E2/E4 100 (4.4%) E3/E3 1051 (46.4%) E3/E4 664 (29.3%) E4/E4 109 (4.8%)	E2/E2 13 (1.3%) E2/E3 129 (12.8%) E2/E4 42 (4.2%) E3/E3 455 (45.0%) E3/E4 324 (32.1%) E4/E4 46 (4.6%)	E2/E2 20 (1.0%) E2/E3 301 (15.1%) E2/E4 93 (4.7%) E3/E3 950 (47.6%) E3/E4 539 (27.0%) E4/E4 92 (4.6%)	E2/E2 5 (0.5%) E2/E3 153 (15.4%) E2/E4 50 (5.0%) E3/E3 478 (48.1%) E3/E4 273 (27.5%) E4/E4 35 (3.5%)	
School (Y/N), n (%)	623 (14.1%)	151 (13.8%)	N/A	N/A	
Years of Education, mean ± sd	N/A	N/A	10.4 ± 3.1	11.0 ± 2.9	

• Preliminary Analyses

- Multiple linear regression models for poor cognition
 - Analyses adjusted for sex, age at diagnosis, years of education, APOE 4 carrier status
 - Indianapolis: Age, years of education, and APOE 4 carrier status were significant in all models
 - Ibadan: Sex and age at diagnosis were significant in all models.
 - Poor cognition
 - In these models, poor cognition is defined as participants diagnosed as cognitively impaired, dementia, or screened as poor at their last study visit

Poor cognition numbers by site

	Ibadan							
	CI	D	N	NCI	good	interm	poor	Total
Normal cognition	0	0	82	5	633	59	0	779
	0.00	0.00	10.53	0.64	81.26	7.57	0.00	
Poor cognition	79	80	0	0	0	0	72	231
	34.20	34.63	0.00	0.00	0.00	0.00	31.17	
Total	79	80	82	5	633	59	72	1010

		Indianapolis						
	CI	D	Ν	NCI		interm	poor	Total
Normal cognition	0	0	123	0	577	40	0	740
	0.00	0.00	16.62	0.00	77.97	5.41	0.00	
Poor cognition	110	101	0	0	0	0	43	254
	43.31	39.76	0.00	0.00	0.00	0.00	16.93	
Total	110	101	123	0	577	40	43	994

Preliminary analyses investigating <u>poor cognition</u> and biomarker interaction

- Site differences in the effect of NfL, GFAP, Ptau181 on poor cognition
- Suggests interactions between AT(N) biomarkers and the 2001 bio-measures that vary by site in models for poor cognition

IIDP Fluid-based Biomarker Study Limitations

Study Design

- Participants diagnosed as having dementia were no longer followed
- Variability in compliance for fasting
 - Indianapolis: 1/3 participants fasted
 - Ibadan: All fasted
- Collection of education information

Assays

- Use of Ptau181
 - Ptau217 was not commercially available at the time of analysis
 - Ptau217 analysis is a future direction

Samples

 Extended time in storage (>20 year storage)

Biostatistics

- Very preliminary data
 - Need to determine how best to look at the 2001 labs that require fasted blood

• Conclusions

- Analysis of historical samples with current techniques can provide a wealth of information
 - Limitations of the study and the samples must be critically evaluated
- AD biomarkers vary by site
 - NfL, GFAP, and Ptau181 in IIDP preliminary studies show differences in looking at poor cognition as an outcome
 - It is critical for research in the AD field to expand beyond Caucasian participants
- Future directions
 - Analysis of AD biomarker data and IIDP existing data will continue
 - Utilization of residual plasma to analyze Ptau217

Acknowledgments

NCRAD

Dr. Tatiana Foroud

Dr. Jeff Dage

Kelley Faber

Clairisa Stayton

IU Biostatistics

Dr. Sujuan Gao Kathleen A. Lane

IIDP IU Investigators

Dr. Hugh C. Hendrie

Dr. Fred Unverzagt

IIDP Ibadan Investigators

Dr. Adesola Ogunniyi

Dr. Olesegun Baiyewu

Funding

The Biomarker Assay Lab is supported by the National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD) through a cooperative agreement grant (U24 AG021886) awarded to NCRAD by the National Institute on Aging (NIA)

The Indianapolis Ibadan Dementia Project was funded through grants from the National Institute on Aging (R01AG009956) from 1991-2012 and also supported by the Indiana Alzheimer's Disease Research Center funded by the National Institute on Aging (P30AG10133)

